История получения искусственных кристаллов. Как создают искусственные кристаллы Синтетические кристаллы

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Исследовательская работа

КРИСТАЛЛЫ И ИХ ПРИМЕНЕНИЕ

Автор работы: Кривошеев Евгений

ученик 7«Б» класса МБОУСОШ №1

Г.Завитинска Амурской области

Руководитель работы : Конченко Н.С.

учитель физики МБОУСОШ №1

Г.Завитинска Амурской области

Завитинск.

2013г.

  • Введение
  • 1. Кристалл. Его свойства, строение и форма
  • 2. Жидкие кристаллы
  • 3. Применение ЖК
  • 4. Применение кристаллов в науке и технике
  • 5. Практическая часть
  • Заключение
  • Список литературы
  • Введение
  • Актуальность работы :
  • Так как кристаллы имеют широкое применение в науке и технике, то трудно назвать такую отрасль производства, где не использовались бы кристаллы. Поэтому знать и разбираться в свойствах кристаллов очень важно для каждого человека.
  • Цель исследования : Выращивание кристалла из раствора в домашних условиях, изучение практического применения кристаллов в науке и технике.
  • Задачи:
  • 1.Изучение теории о кристаллах.
  • 2.Изучение материала по выращиванию кристалла в обычных условиях и в лабораторных условиях.
  • 3.Наблюдение за образованием кристалла.
  • 4.Описание наблюдений.
  • 5.Изучение области применения кристаллов в современной жизни.

1. Кристалл. Его свойства, строение и форма

Слово «кристалл» происходит от греческого «crustallos », то есть «лед». Твердые тела, атомы или молекулы которых образуют упорядоченную периодическую структуру (кристаллическую решетку).

Образование кристаллов.

Кристаллы образуются тремя путями: из расплава, из раствора и из паров. Примером кристаллизации из расплава может служить образование льда из воды. кристалл жидкий выращивание лабораторный

Вокружающем нас мире часто можно наблюдать образование кристаллов непосредственно из газовой среды, из растворов и из расплава. В тихую морозную ночь при ясном небе, в ярком свете луны или фонаря, мы иногда видим поблескивающие искорками медленно опускающиеся чешуйки инея. Это пластинчатые кристаллики льда, образующиеся тут же около нас из влажного и остывшего воздуха.

Структура твердых тел зависит от условий, в которых происходит переход из жидкого в твёрдое состояние. Если такой переход происходит очень быстро, например, при резком охлаждении жидкости, то частицы не успевают выстроиться в правильную структуру и образуется мелкокристаллическое тело. При медленном охлаждении жидкости получаются крупные и правильной формы кристаллы. В некоторых случаях, для того чтобы вещество закристаллизовалось, его приходиться выдерживать при различных температурах. Также на рост кристалла влияет внешнее давление. Кроме того, значительная часть кристаллов, имевших в далеком прошлом совершенную огранку, успела утратить ее под действием воды, ветра, трения о другие твердые тела. Так, многие округлые прозрачные зерна, которые можно найти в прибрежном песке, являются кристаллами кварца, лишившимися граней в результате длительного трения друг о друга.

Строение кристаллов

Разнообразие кристаллов по форме очень велико.

Кристаллы могут иметь от четырех до нескольких сотен граней. Но при этом они обладают замечательным свойством - какими бы ни были размеры, форма и число граней одного и того же кристалла, все плоские грани пересекаются друг с другом под определенными углами. Углы между соответственными гранями всегда одинаковы. На форму оказывают влияние такие факторы, как температура, давление, частота, концентрация и направление движения раствора. Поэтому кристаллы одного и того же вещества могут обнаруживать большое разнообразие форм.

Кристаллы каменной соли, например, могут иметь форму куба, параллелепипеда, призмы или тела более сложной формы, но всегда их грани пересекаются под прямыми углами. Грани кварца имеют форму неправильных шестиугольников, но углы между гранями всегда одни и те же -- 120°.

Закон постоянства углов, открытый в 1669 г. датчанином Николаем Стено, является важнейшим законом науки о кристаллах -- кристаллографии.

Измерение углов между гранями кристаллов имеет очень большое практическое значение, так как по результатам этих измерений во многих случаях может быть достоверно определена природа минерала.

Простейшим прибором для измерения углов кристаллов является прикладной гониометр.

Виды кристаллов

Кроме того различают монокристаллы и поликристаллы.

Монокристалл представляет собой монолит с единой ненарушенной кристаллической решеткой. Природные монокристаллы больших размеров встречаются очень редко.

Монокристаллами являются кварц, алмаз, рубин и многие другие драгоценные камни.

Большинство кристаллических тел являются поликристаллическими, то есть состоят из множества мелких кристалликов, иногда видных только при сильном увеличении.

Поликристаллами являются все металлы.

2. Жидкие кристаллы

Жидкий кристалл - это особое состояние вещества, промежуточное между жидким и твердым состояниями. В жидкости молекулы могут свободно вращаться и перемещаться в любых направлениях. В жидком кристалле имеется некоторая степень геометрической упорядоченности в расположении молекул, но допускается и некоторая свобода перемещения.

Консистенция жидких кристаллов может быть разной - от легкотекучей жидкой до пастообразной. Жидкие кристаллы имеют необычные оптические свойства, что используется в технике.Жидкие кристаллы образуются из молекул, имеющих разную геометрическую форму. таких, как цвет, прозрачность и др. На всем этом основаны многочисленные применения жидких кристаллов.

3. Применение ЖК

Расположение молекул в жидких кристаллах изменяется под действием таких факторов, как температура, давление, электрические и магнитные поля; изменения же расположения молекул приводят к изменению оптических свойств, таких, как цвет, прозрачность и способность к вращению плоскости поляризации проходящего света. На всем этом основаны многочисленные применения жидких кристаллов. Например, зависимость цвета от температуры используется для медицинской диагностики. Нанося на тело пациента некоторые жидкокристаллические материалы, врач может легко выявлять затронутые болезнью ткани по изменению цвета в тех местах, где эти ткани выделяют повышенные количества тепла. Температурная зависимость цвета позволяет также контролировать качество изделий без их разрушения. Если металлическое изделие нагревать, то его внутренний дефект изменит распределение температуры на поверхности. Эти дефекты выявляются по изменению цвета нанесенного на поверхность жидкокристаллического материала.

Тонкие пленки жидких кристаллов, заключенные между стеклами или листками пластмассы, нашли широкое применение в качестве индикаторных устройств. Жидкие кристаллы широко применяются в производстве наручных часов и небольших калькуляторов. Создаются плоские телевизоры с тонким жидкокристаллическим экраном.

4. Применение кристаллов в науке и технике

В наше время кристаллы имеют очень широкое применение в науке, технике и медицине.

Алмазными пилами распиливают камни. Алмазная пила - это большой (до 2-х метров в диаметре) вращающийся стальной диск, на краях которого сделаны надрезы или зарубки. Мелкий порошок алмаза, смешанный с каким-нибудь клейким веществом, втирают в эти надрезы. Такой диск, вращаясь с большой скоростью, быстро распиливает любой камень.

Огромное значение имеет алмаз при бурении горных пород, в горных работах. В граверных инструментах, делительных машинах, аппаратах для испытания твердости, сверлах для камня и металла вставлены алмазные острия. Алмазным порошком шлифуют и полируют твердые камни, закаленную сталь, твердые и сверхтвёрдые сплавы. Сам алмаз можно резать, шлифовать и гравировать только самим же алмазом. Наиболее ответственные детали двигателей в автомобильном и авиационном производстве обрабатывают алмазными резцами и сверлами.

Корундом можно сверлить, шлифовать, полировать, точить камень и металл. Из корунда и наждака делают точильные круги и бруски, шлифовальные порошки и пасты. На полупроводниковых заводах тончайшие схемы рисуют рубиновыми иглами.

Гранат также используется в абразивной промышленности. Из гранатов изготовляют шлифовальные порошки, точильные круги, шкурки. Они иногда заменяют в приборостроении рубин.

Из прозрачного кварца делают линзы, призмы и др. детали оптических приборов. Искусственное «горное солнце» - аппарат, широко применяемый в медицине. При включении данный аппарат излучает ультрафиолетовый свет, эти лучи являются целебными. В данном аппарате лампа сделана из кварцевого стекла. Кварцевая лампа используется не только в медицине, но и в органической химии, минералогии, помогает отличить фальшивые марки, денежные купюры от настоящих. Чистые бездефектные кристаллы горного хрусталя используются при изготовлении призм, спетрографов, поляризующих пластинок.

Флюорит используется для изготовления линз телескопов и микроскопов, для изготовления призм спектрографов и в других оптических приборах.

5. Практическая часть

Выращивание кристаллов медного купороса.

Медный купорос -- пятиводный сульфат меди, так как крупные кристаллы напоминают цветное синее стекло. Медный купорос применяют в сельском хозяйстве для борьбы с вредителями и болезнями растений, в промышленности при производстве искусственных волокон, органических красителей, минеральных красок, мышьяковистых химикатов.

Способ выращивания в домашних условиях:

1) Для начала приготовим раствор концентрированного купороса. После этого слегка подогреем смесь, чтобы добиться полного растворения соли. Для этого стакан поставим в кастрюлю с теплой водой.

2) Полученный концентрированный раствор перельем в банку или химический стакан; туда же подвесим на нитке кристаллическую "затравку" - маленький кристаллик той же соли - так, чтобы он был погружен в раствор. На этой "затравке" и предстоит расти будущему экспонату вашей коллекции кристаллов.

3) Сосуд с раствором поставим в открытом виде в теплое место. Когда кристалл вырастет достаточно большим, вынем его из раствора, обсушим мягкой тряпочкой или бумажной салфеткой, обрежем нитку и покроем грани кристалла бесцветным лаком, чтобы предохранить от "выветривания" на воздухе.

Наблюдение за процессом роста кристаллов медного купороса.

Для начала мы налили в химический стакан раствор медного купороса, привязали на нитку затравку. И опустили в стакан кристалл. Уже на следующий день у нас появился поликристалл довольно больших размеров, около 2 сантиметров в длине. Сам кристалл был очень неровный, с небольшими столбцами. Дальше кристаллизация не продолжалась, сколько бы мы не ждали.

Но мы на этом не останавливались и сделали ещё два кристалла медного купороса. Только затравку мы взяли из столбца неполучившегося кристалла. В одном растворе температура постоянно менялась, а в другом стакане была неизменной. Через несколько суток у нас получились два полноценных монокристалла медного купороса. Они получились с ровными гранями, абсолютно симметричные. Так я понял что для того чтобы сделать ровный кристалл надо чтобы затравка тоже была ровной и симметричной.

Наблюдение за процессом роста кристаллов в растворах солей под микроскопом.

Рассматривать кристаллы под микроскопом очень интересно, так как чем "моложе" кристалл, тем более правильную форму он имеет. Изучение кристаллов под микроскопом не занимает много времени и ресурсов: для приготовления раствора необходимо всего несколько грамм соли, да и времени на рост кристалла уходит не так много.

Наносили на предметное стекло микроскопа несколько капель насыщенного раствора различных солей. Стекло слегка подогревали пламенем спиртовки и помещали на столик микроскопа. Перемещением предметного стекла и регулированием увеличения добивались такого положения, чтобы капля заняла все поле зрения микроскопа. Через небольшой промежуток времени (около 1 мин) на краю капли, где она высыхает быстрее, начиналась кристаллизация. Возникшие мелкие кристаллы образовывали по краям капли сплошную непрозрачную корку, которая в проходящем свете кажется темной. Постепенно из этой массы кристаллов начинали проступать направленные внутрь капли отдельные острия индивидуальных кристаллов, которые, разрастаясь, образуют разнообразные формы. Чаще всего новые центры кристаллизации в свободном пространстве внутри капли, как правило, самопроизвольно не возникали. Через некоторое время все поле зрения заполнялось кристаллами, и кристаллизация практически заканчивалась.

Заключение

Таким образом, кристаллы одни из самых красивых и загадочных творений природы. Мы живем в мире, состоящем из кристаллов, строим из них, обрабатываем их, едим их, лечимся ими… Изучением многообразия кристаллов занимается наука кристаллография. Она всесторонне рассматривает кристаллические вещества, исследует их свойства и строение. В давние времена считалось, что кристаллы представляют собой редкость. Действительно, нахождение в природе крупных однородных кристаллов - явление нечастое. Однако мелкокристаллические вещества встречаются весьма часто. Так, например, почти все горные породы: гранит, песчаники, известняк - кристалличны. Даже некоторые части организма кристалличны, например, роговица глаза, витамины, оболочка нервов. Долгий путь поисков и открытий, от измерения внешней формы кристаллов вглубь, в тонкости их атомного строения еще не завершен. Но теперь исследователи довольно хорошо изучили его структуру и учатся управлять свойствами кристаллов.

В результате проведенной работы я могу сделать следующие выводы:

1. Кристалл - это твердое состояние вещества. Он имеет определенную форму и определенное количество граней.

2. Кристаллы бывают разных цветов, но в большинстве своём прозрачны.

3. Кристаллы - совсем не музейная редкость. Кристаллы окружают нас повсюду. Твёрдые тела, из которых мы строим дома и делаем станки, вещества, которые мы употребляем в быту, - почти все они относятся к кристаллам. Песок и гранит, поваренная соль и сахар, алмаз и изумруд, медь и железо - всё это кристаллические тела.

4. Самые ценные среди кристаллов - драгоценные камни.

5. Я вырастил кристалл в домашних условиях из насыщенного раствора медного купороса.

Таким образом, цели и задачи, которые были обозначены мной в начале работы, достигнуты. В результате проведенной работы я опытным путём нашёл доказательство для предположения, которое было высказано английским кристаллографом Франком о ступенчатом росте кристаллов.

Проведенная работа была очень интересной и занимательной. Мне бы хотелось ещё вырастить кристаллы из других веществ, ведь их так много вокруг нас…

Размещено на Allbest.ru

...

Подобные документы

    Твёрдые кристаллы: структура, рост, свойства. "Наличие порядка" пространственной ориентации молекул как свойство жидких кристаллов. Линейно поляризованный свет. Нематические, смектические и холестерические кристаллы. Общее понятие о сегнетоэлектриках.

    курсовая работа , добавлен 17.11.2012

    Примеры применения монокристаллов. Семь кристаллических систем: триклинная, моноклинная, ромбическая, тетрагональная, ромбоэдрическая, гексагональная и кубическая. Простые формы кристаллов. Получение перенасыщенного раствора и выращивание кристалла.

    презентация , добавлен 09.04.2012

    История открытия жидких кристаллов, особенности их молекулярного строения, структура. Классификация и разновидности жидких кристаллов, их свойства, оценка преимуществ и недостатков практического использования. Способы управления жидкими кристаллами.

    курсовая работа , добавлен 08.05.2012

    Общая характеристика поверхностных явлений в жидких кристаллах. Рассмотрение отличительных особенностей смектических жидких кристаллов, различных степеней их упорядочения. Исследование анизотропии физических свойств мезофазы, степени упорядочения.

    реферат , добавлен 10.10.2015

    Жидкокристаллическое (мезоморфное) состояние вещества. Образование новой фазы. Типы жидких кристаллов: смекатические, нематические и холестерические. Термотропные и лиотропные жидкие кристаллы. Работы Д. Форлендера, способствовавшие синтезу соединений.

    презентация , добавлен 27.12.2010

    История открытия жидких кристаллов. Их классификация, молекулярное строение и структура. Термотропные жидкие кристаллы: смектический, нематический и холестерический тип. Лиотропные ЖК. Анизотропия физических свойств. Как управлять жидкими кристаллами.

    реферат , добавлен 27.05.2010

    Понятие строения вещества и основные факторы, влияющие на его формирование. Основные признаки аморфного и кристаллического вещества, типы кристаллических решеток. Влияние типа связи на структуру и свойства кристаллов. Сущность изоморфизма и полиморфизма.

    контрольная работа , добавлен 26.10.2010

    Физические и физико-химические свойства ферритов. Структура нормальной и обращенной шпинели. Обзор метода спекания и горячего прессования. Магнитные кристаллы с гексагональной структурой. Применение ферритов в радиоэлектронике и вычислительной технике.

    курсовая работа , добавлен 12.12.2016

    Эпитаксия - ориентированный рост одного кристалла на поверхности другого (подложки). Исследование форм кристаллов NaCl, образуемых при сублимации из водного раствора; структурное соответствие эпитаксиальных пар по срастающимся граням и отдельным рядам.

    курсовая работа , добавлен 04.04.2011

    Изучение понятия, видов и способов образования кристаллов - твердых тел, в которых атомы расположены закономерно, образуя трехмерно-периодическую пространственную укладку - кристаллическую решетку. Образование кристаллов из расплава, раствора, пара.

Оборудование для выращивания кристаллов сапфира представляет собой автоматизированную электрическую печь для выращивания монокристалла сапфира модифицированным методом Киропулоса.


Описание:

Оборудование для выращивания кристаллов сапфира представляет собой автоматизированную электрическую печь для выращивания монокристалла сапфира модифицированным методом Киропулоса.

Кристаллы сапфира выращиваются из расплава. Веществами, наиболее подходящими для выращивания из расплава , являются те, которые плавятся без разложения, не имеют полиморфных переходов и характеризуются низкой химической активностью.

В методе Киропулоса монокристаллическая затравка, закрепленная в водоохлаждаемом кристаллодержателе, приводится в контакт с расплавом, находящимся в тигле. На этой затравке происходит постепенное нарастание кристалла в форме полусферы. При этом кристалл как бы врастает в расплав. Когда разрастающийся кристалл приближается к стенке тигля, кристаллодержатель с кристаллом поднимается на несколько мм и затем продолжается дальнейший рост до очередного разрастания до стенок тигля, последующего подъема и т. д. После каждого такого подъема на боковой поверхности кристалла остаются кольцеобразные метки - следы перехода от одного уровня к другому. Таким образом, при выращивании методом Киропулоса диаметр выращиваемого кристалла ограничивается лишь размерами тигля и практически может достигать 300 см и более.

В модифицированном методе Киропулоса вместо периодического подъема кристаллодержателя с растущим кристаллом осуществляется непрерывный его подъем с постоянной скоростью. Рост проводится из вольфрамового тигля в высоком вакууме , при этом применяется резистивный вольфрамовый нагреватель . Выращивание монокристаллов осуществляется непосредственно в расплаве путем плавного снижения температуры. Скорость выращивания кристалла – скорость вытягивания растущего кристалла задается заведомо низкой (порядка 0.2 мм/ч), чтобы избежать возможного образования в монокристаллах различного рода включений, блоков и малоугловых границ. Линейный характер снижения температуры и постоянство скорости вытягивания приводит к образованию кристаллов грушевидной формы с несколько повышенной плотностью пор в носовой и хвостовой зонах кристалла.


Преимущества:

– высокое качество продукции,

автоматизация выращивания монокристаллов.

Образцы выращиваемых сапфиров:

Вес,кг Диаметр,мм Высота,мм
60 250 360
85 270 380
100 320 410

затравка
выращивание монокристаллов
монокристал
монокристалл сапфира
метод киропулоса
монокристаллы алмаза
выращивание кристаллов расплава
производство затравок для выращивания монокристаллов
оборудование для выращивания кристаллов
монокристалл поваренной соли
монокристаллы кристаллизация
искусственный монокристалл
монокристалл сделать
изготовление монокристаллов
методы получения монокристаллов
выращивание монокристаллов сапфира
купить оборудование для выращивания кристаллов
оборудование выращивания алмаза
метод киропулоса википедия
метод киропулоса проток аргона
белгородский завод сапфиров монокристалл
ооо белгородский завод сапфиров монокристалл
оборудование выращивания искусственных кристаллов
выращивание монокристаллов сапфира вредно для здоровья
сущность метода киропулоса
кристаллы выращенные методом киропулоса
синтез монокристаллов алмаза на алмазной подложке
установка для выращивания монокристаллов из расплава crysten
оборудование для выращивания рубинов
кристаллодержатель
монокристаллическая затравка
оборудование для выращивания изумрудов

Коэффициент востребованности 2 677

Алмазы, рубины, изумруды, сапфиры и кремний можно не только добыть на природных месторождениях, но и синтезировать. Конечно, искусственные минералы никогда не будут иметь цену натуральных, но мировой спрос на них, как утверждают специалисты, серьезно превышает предложение — объем добычи ограничен природными запасами, а электронная промышленность, основной потребитель кристаллов, развивается бурными темпами. Как ожидают специалисты, емкость мирового рынка синтезированных кристаллов к 2007 году достигнет $11,3 млрд. Россия может оказаться на обочине этого бизнеса, если не озаботится инвестициями в профильное производство.

Алхимики от науки

Всю историю своего существования люди пытались не только обрести чудо, но еще и заработать на нем, например получить из свинца золото или превратить горный хрусталь в бриллианты. Самым легендарным алхимиком считается француз Николя Фламель, которому приписывают получение философского камня (кристаллического белого порошка), способного превратить свинец в золото. И хотя научные труды Фламеля до нас не дошли, в парижских архивах сохранились документы, подтверждающие, что скромный книготорговец внезапно разбогател: скупил 13 домов, большие участки земли в Париже и Булони, построил 12 церквей и несколько больниц.
Впрочем, ученые в то, что кому-либо в Средние века удалось получить настоящее золото или бриллианты, разумеется, не верят — это все сказки. Революция случилась в веке двадцатом, когда техника и технологии достигли необходимого развития. Никакой алхимии, исключительно научный подход.
Как известно, настоящие (природные) драгоценные камни — всего лишь твердые соли различных металлов, молекулы которых организованы в упорядоченную структуру, т.н. кристаллическую решетку. В природе кристаллы образовывались в течение миллионов лет, в глубине земной коры, при высоких температурах (до 2000 °С) и под колоссальным давлением сотни тысяч атмосфер. Мест, где складывались такие условия, крайне мало, чем и объясняется редкость драгоценных камней (за что, собственно, они и ценятся). Чтобы синтезировать аналог природных минералов, ученым необходимо было в лабораторных условиях воспроизвести природные явления, причем в ускоренном варианте. Получить столь высокие температуры и давление стало возможным лишь в начале прошлого века.
Это дело оказалось весьма высокотехнологичным и затратным, но не лишенным смысла — добывающие компании не могли по объективным причинам удовлетворить спрос на камни, а активно развивающаяся промышленность требовала новых алмазов, сапфиров и рубинов. Сейчас мировой рынок синтезированных камней оценивается более чем в $6 млрд; примерно 86% приходится на кристаллы, полученные для нужд промышленности, 14% идет на удовлетворение потребностей ювелиров.
Практически все виды кристаллов синтезируют и в России, но в незначительных объемах. В подмосковном Троицке выращивают алмазы, в Зеленограде — сапфиры, гранаты, рубины, под Нижним Новгородом — рубины, в Новосибирске — изумруды. Михаил Борик, старший научный сотрудник Научного центра лазерных материалов и технологий ИОФАН им. А.М. Прохорова: Так исторически сложилось: в каком городе в советское время разработали метод получения того или иного кристалла, там его до сих пор и синтезируют. Новых производств практически не возникло. Но потребность в искусственных кристаллах постоянно растет, и специалистов не хватает.

Хачик Багдасаров: "Оборудование для выращивания кристаллов стоит $300-400 тысяч и начинает окупаться уже на второй год"

Рубиновая лихорадка

В 1902 году французскому инженеру Вернейлю после многочисленных неудачных попыток наконец удалось синтезировать небольшой кристалл рубина весом 6 г. Фактически он стал самым первым искусственным драгоценным камнем, идентичным природному. С точки зрения коммерции стремление Вернейля получить именно рубин было вполне оправданно — в природе рубинов крайне мало. Сейчас в мире добывается около пяти тонн рубинов ежегодно, между тем спрос исчисляется сотнями тонн (в основном они нужны не ювелирам, а часовщикам).
Исходное вещество, т.н. шихту (порошок окиси алюминия с примесью хрома), Вернейль пропустил через газовую горелку с температурой 2150 °С, и полученный расплав при понижении температуры начал медленно кристаллизоваться, превращаясь в рубин. Очевидные простота и надежность метода Вернейля привели к быстрой организации промышленного производства кристаллов рубина сперва во Франции, а позднее практически во всех высокоразвитых странах. Именно благодаря синтетическим рубинам стал возможен ряд открытий. Например, на основе рубина был изобретен лазер, позволивший точно измерить расстояние от Земли до Луны, использовать космическое пространство для коммуникации и др.
Позже оказалось, что с помощью технологии синтеза рубинов возможно получать и другие ценные кристаллы — сапфиры и гранаты: вначале исходное вещество плавится при высоких температурах, затем переохлаждается и в результате кристаллизуется. Технология проста и, что самое интересное, доступна, как уверяет Хачик Багдасаров, заведующий отделом высокотемпературной кристаллизации Института кристаллографии им. А.В. Шубникова РАН (занимается синтезом сапфиров, рубинов и гранатов). Тем более странно, что в России синтезом кристаллов занимаются считанные компании и лаборатории при НИИ. Сейчас наиболее рентабельным считается метод Багдасарова, изобретенный в НИИ кристаллографии РАН. Хачик Багдасаров: Я первым применил так называемую горизонтально направленную кристаллизацию для синтеза гранатов еще в 1965 году, и эта технология оказалась существенно экономичнее по сравнению с распространенным методом Вернейля. Объясняется все просто: в себестоимости кристаллов большую часть занимает электроэнергия из-за необходимости поддержания высокой температуры и давления. Когда же синтезируется горизонтальная пластина, а не вертикальный стержень, энергии затрачивается существенно меньше.
Тем не менее, как утверждают специалисты, до сих пор в мире спрос на рубины, сапфиры и гранаты, подстегиваемый развитием электронной промышленности, не удовлетворен. Сапфировые стекла необходимы не только часовым фирмам (особенно швейцарским), для производства иллюминаторов космических кораблей и головок самонаводящихся ракет, но и производителям мобильных телефонов, чья ежегодная потребность порядка 6 млрд стекол! С помощью граната, активированного ионами неодима, производят лучшие лазеры. У ювелиров сейчас особенно ценится гранат зеленого и розового цветов, которые получаются благодаря добавкам соответственно тулия или эрбия (1 кг — $20-25).
Однако спрос на тугоплавкие кристаллы растет только со стороны западных компаний, в России он стремится к нулю из-за упадка производства электроники. Хачик Багдасаров: Больше всего сапфир востребован корейскими (для нужд часовой промышленности) и японскими (для оптики) фирмами. Всего в мире ежегодно синтезируют порядка тысячи тонн сапфиров. Россия в этом деле явный аутсайдер. Например, если до 90-х годов в СССР выращивалось порядка 180 тонн рубинов и порядка 50 тонн сапфиров, то сейчас всего 10-20 тонн рубина, порядка 20 тонн сапфира и 100-120 кг гранатов.
По словам Игоря Алябьева, заместителя директора компании "РОКОР" (занимается производством изделий из сапфира), себестоимость выращивания 1 кг кристаллов сапфира порядка $600, из него можно получить 100 пластин весом 5 г и стоимостью $12 каждая. Синтетический рубин для ювелирной промышленности стоит порядка $60 за килограмм (для сравнения: один карат (0,2 г) природного камня — $50), для технических целей — от $70 за килограмм. При этом чем больше монокристалл, тем он дороже, а себестоимость синтеза ниже. Так, монокристалл сапфира весом до 6 кг оценивается в $5-10 тыс., при этом себестоимость одного килограмма порядка $200 (а продажная цена 1 кг — $500). Рентабельность бизнеса нетрудно подсчитать, и такой порядок цифр касается всех трех упомянутых выше кристаллов. Мировой объем синтеза сапфира около тысячи тонн.
Сейчас наиболее крупные производства синтетических рубинов (сотни миллионов каратов в год) сосредоточены в Швейцарии, Франции, Германии, США и Великобритании. Специальные установки кристаллизации выпускает Таганрогский завод электротермического оборудования. Хачик Багдасаров: Отечественное оборудование стоит порядка $50 тыс., западное — $300-400 тыс. Важный момент: имеет смысл создавать производство минимум с десятью установками для рентабельных объемов. Один цикл производства занимает два-три дня, за которые с одной установки удается снять 2 кг кристаллов. "Отобьется" оборудование уже на второй год.

Идентификация камня

Как уверяет Багдасаров, структура искусственного и натурального камней (как и внешний вид) идентична, и вполне естественно, что лабораторно синтезированные драгоценные минералы интересуют фальсификаторов. "Ко мне лет десять назад приезжал один индус, просил синтезировать неотличимые от натурального камня рубины. Но через какое-то время индус пропал, говорят, его убрали добытчики природных камней. Тем не менее драгоценный камень, идентичный натуральному, для нас не составляет особого труда вырастить. И покупатель никогда не отличит его от природного",— рассказывает он.

Вера Богданова, эксперт-геммолог ювелирного дома "Адамас": В природе большие драгоценные камни — редкость, их находка представляет особую историческую ценность, а выдающемуся камню присваивается имя той местности, где его нашли. Ювелиры также знают: с натуральными камнями гораздо больше хлопот при обработке, большинство бракуется из-за трещин и дефектов, и только единицы годятся для ювелирных поделок. Плюс более высокая стоимость природных. То, что ювелиры используют искусственно выращенные камни якобы как натуральные, получило широкую огласку сравнительно недавно. Ко мне нередко на экспертизу приносят драгоценности, доставшиеся от бабушек, и их обладатели очень удивляются, когда узнают, что камень искусственный.
Михаил Борик: В ювелирных магазинах хватает изделий из рубинов и сапфиров, полученных в лабораторных условиях. Обычный покупатель на глаз их точно не отличит. Даже большинство продавцов в ювелирных магазинах сами не знают, что продают. Правда, известные производители ювелирной продукции, дорожащие репутацией, никогда не скрывают, где синтетика, а где природа. Тем не менее при покупке дорогого украшения надо всегда требовать сертификат на подлинность камня.
Как уверяет Хачик Багдасаров, когда в середине 50-х наука вплотную подошла к синтезу алмазов, при минфинах всех развитых стран были созданы специальные отделы, контролирующие успехи ученых. Представим, что на рынок хлынут синтетические, неотличимые от природных алмазы — экономика ряда стран просто рухнет, а стратегические запасы алмазов ряда стран превратятся в пыль.

Лучшие друзья бурильщика

Ежегодно в мире добывается в среднем 100-110 млн карат (примерно 20 тонн) алмазов, и на мировом рынке 1 карат природного алмаза стоит от $55, правда, большая часть камней для ювелирки не подходит по причине дефектов, трещин и посторонних вкраплений, но зато востребована в промышленности, в первую очередь обрабатывающей, нуждающейся в высоких прочностных характеристиках минерала. Тем не менее, как утверждают специалисты, инструментальной, металло- и камнеобрабатывающей отраслям необходимо примерно в четыре раза больше алмазов, чем их добывается, а в ряде высокотехнологичных областей (при изготовлении элементов электроники, датчиков ультрафиолетового излучения) природное сырье использовать практически невозможно по причине присутствия в 98% природных алмазов вкраплений азота. Искусственные алмазы лишены всех дефектов природных, т.к. человек сумел создать для них идеальные условия синтеза.
В 1953-1954 годах ученым из двух независимых исследовательских групп — шведской компании ASEA и американской General Electric впервые удалось синтезировать алмазы размером менее 1 мм. Для этого расплавили смесь графита с железом при температуре около 2500 °С, а затем полученный расплав поместили в твердую сжимаемую среду при давлении 70-80 тыс. атмосфер. Василий Бугаков, замдиректора Института физики высоких давлений (Троицк; занимается синтезом алмазов): Синтетический алмаз, как и природный, измеряется в каратах, а стоит на мировом рынке порядка $10 за карат, в пять раз дешевле природного. При этом затраты на сырье и электроэнергию составляют всего $5 на карат. Сейчас по выращиванию синтетических алмазов Россия занимает третье место, ежегодно производя 25 млн карат.
Правда, пока алмазы синтезируют только в интересах промышленности — искусственные камни ювелирного качества по своей себестоимости пока превосходят природные. К тому же размер синтезируемых алмазов ограничен 3 мм, т.к. пока просто отсутствуют материалы, способные выдержать столь высокие температуру и давление при больших объемах камеры. Установку для синтеза 200 кг алмазов в месяц можно приобрести за $30 тыс.
В отличие от алмазов синтезированные изумруды используются исключительно для ювелирной продукции, хотя, если объективно, они не отличаются особой красотой из-за отсутствия дисперсии, т.е. разложения солнечного света на спектр, и ценятся исключительно из-за своей редкости, а также небольших объемов производства (ежегодно в мире добывается всего 500 кг природного изумруда, из них 300 кг на российском Урале).
Получают изумруд в отличие от основной массы кристаллов не из расплава сырья (изумруд разлагается при нагревании), а из раствора борного ангидрида, синтезируя в специальных гидротермальных камерах при относительно низких температурах (около 400 °С) и давлении (около 500 атмосфер). Гидротермическая установка для синтеза изумрудов относительно недорога ($5-10 тыс.), но малопроизводительна (до 10 кг кристаллов ежемесячно). Себестоимость 1 кг изумруда — $100-200, а продажная цена одного карата примерно равна цене камня природного — около $2.
Ежегодно в России, на предприятии в Новосибирске, синтезируется до 100 кг изумрудов, в мире не более одной тонны.

Вопреки природе

В 1968 году российские физики получили прозрачный кристалл, не имеющий природного близнеца, и назвали его фианитом в честь своего Физического института Академии наук (ФИАН), хотя первые опыты по синтезу подобных кристаллов осуществлялись еще в 20-х годах французскими химиками.
Целью синтеза фианита было получение кристалла для применения в лазерах. Правда, превзойти гранат по своим "лазерным" свойствам фианит не смог, но его необычную красоту, многоцветность и дешевизну по достоинству оценили ювелиры (до 98% фианитов производится для их нужд). Для хирургии выпускается скальпель с фианитом ($500) — дело в том, что некоторые люди страдают аллергией на металл, а лезвие из фианита позволяет избежать аллергической реакции.
Фианиты синтезируются из смеси окисей циркония, алюминия, натрия. Процесс практически безотходный, т.к. осколки и неудачные кристаллы переплавляются заново. Из 100 кг сырья за сутки с помощью высокочастотного генератора (порядка $50 тыс.) получают до 30 кг кристаллов фианита. Прозрачность камня зависит от температуры плавления — чем выше температура, тем прозрачнее кристалл. Елена Ломонова, заведующая лабораторией Научного центра лазерных материалов и технологий ИОФАН: Выращивать фианиты легко и приятно, а добавление тех или иных примесей позволяет создавать уникальные кристаллы не встречающихся в природе цветов, например лаванды, или добиваться необычных оптических эффектов, таких как смена цвета при изменении освещения — т.н. александритовый эффект.
СССР долгое время оставался монополистом по выпуску фианитов, диктуя цены, поначалу доходившие до $3 тыс. за килограмм (хотя вопрос приоритета производства фианитов весьма спорный, американцы его даже оспаривали в судебном порядке). Вячеслав Осико, директор Научного центра лазерных материалов и технологий ИОФАН: Обманным путем из СССР стали вывозить фианиты, выдавая их за бриллианты. Для борьбы с ювелирными махинациями даже сотрудников КГБ обучали отличать драгоценные камни от подделок. За способность играть всеми цветами радуги ювелиры называют фианит наглым камнем. Теперь во всем мире синтезируют свыше 1 тыс. тонн фианитов ежегодно, а цена их снизилась до $60 за 1 кг. При этом себестоимость килограмма фианита, как утверждают специалисты, порядка $30.

Кристалл будущего

Впрочем, по росту мировых объемов производства и рентабельности за синтезируемым кремнием, незаменимым в микроэлектронной промышленности, солнечных батареях и прочих технологичных устройствах, в обозримом будущем не угнаться ни одному кристаллу. Ежегодно в мире выпускается более 30 тыс. тонн кремния, а по прогнозам, к 2010 году эта цифра удвоится (сейчас кристаллы кремния занимают 80% мирового рынка всех искусственных кристаллов). Тем не менее, как утверждают специалисты, кремния в мире катастрофически не хватает из-за роста производства компьютерной и микропроцессорной техники.

Вячеслав Осико:"В свое время фианиты вывозили, выдавая их за бриллианты"

В России потребление кремния, как и его производство, крайне незначительны все по той же причине сокращения производства электроники. И если в 1990 году в СССР было выращено 360 тонн кремния, то в прошлом году в РФ всего 270 тонн, из которых лишь 50 тонн для внутреннего рынка. Сейчас 1 кг кремния стоит $100, при этом рентабельность производства, по словам специалистов, превышает 100%.
Как уверяет Хачик Багдасарян, инвестиции в производство кремния и в продукты, для выпуска которых он необходим, могут оказаться золотым дном, а сырье для его синтеза (обычный песок) буквально под ногами: "Года три назад в Германии я познакомился с молодым предпринимателем, начинавшим производство солнечных батарей буквально с одного паяльника, а сейчас имеющим ежегодную прибыль €20 млн. Кремний уже давно стал стратегическим материалом, определяющим научно-технологическое развитие страны".
Завлабораторией Государственного научного центра редких металлов Михаил Мильвидский утверждает, что ученые всего мира работают над наращиванием объемов производства кремния, ведь солнечная энергия по сравнению с нефтью, газом и углем дешевая, экологически чистая и бесконечная. Хачик Багдасарян: По прогнозам многих ученых, к концу XXI века до 80% мировой электроэнергии будет вырабатываться из солнечной или ветровой энергии. И кремний в первом случае — материал незаменимый.
Правда, "атомное" лобби в России в этом не заинтересовано, и поэтому, если в мире движение в сторону безопасных и экологически чистых способов выработки электроэнергии давно очевидно, у нас процессы обратные.
ОЛЕСЯ ДЕЙНЕГА, ДМИТРИЙ ТИХОМИРОВ

ПОЛЕВЫЕ ИССЛЕДОВАНИЯ

Кое-что о бриллиантах

Самый дорогой природный камень — алмаз, чья добыча сейчас ведется в 26 странах (крупнейшие из них — Россия, Ботсвана и ЮАР). Ежегодно в мире добывается в среднем 100-110 млн карат (20 тонн) алмазов. Их высокая цена ($55 за карат) объясняется не только характеристиками камней, но и уровнем монополизации в торговле: как известно, корпорация "Де Бирс" контролирует 70-80% поставляемых на рынок природных алмазов. По данным Минфина, объем добычи алмазов в России в первом полугодии 2005 года составил 17,7 млн карат при средней цене $51 за карат. Экспорт необработанных природных алмазов с территории РФ за январь--сентябрь 2005 года составил 23,6 млн карат, из них доля ювелирных алмазов — 20-25%.
Самым большим ювелирным алмазом в мире считается "Куллинан", имеющий массу 3106 карат (621,2 г), он был найден в 1905 году в Трансваале (ЮАР). Впоследствии из него было изготовлено девять крупных бриллиантов (самый большой — "Звезда Африки", 530,2 карата) и 96 мелких, причем в процессе огранки было потеряно 66% исходной массы кристалла.
Бриллианты (ограненные алмазы) оцениваются по четырем главным критериям (так называемая система четырех "C"): цвет (color), прозрачность (clarity), огранка и пропорции (cut), вес в каратах (carat weight). Наиболее ценны бриллианты, имеющие так называемый высокий цвет, т.е. бесцветные, а вот наличие даже незначительного оттенка желтого, коричневого или зеленого может серьезно понизить стоимость камня. У бесцветных бриллиантов выше всего ценится круглая огранка (в этом случае они имеют 57 граней), позволяющая максимально выявить блеск и игру камня.

ПРЕДРАССУДКИ

Тайная сила камней

Драгоценные камни исстари служили украшениями и талисманами. Например, египтяне охотно носили украшения из изумрудов, бирюзы, аметистов и горного хрусталя. Римляне выше всего ставили алмазы и сапфиры. Нередко камень указывал на профессию своего обладателя. Моряки верили, что изумруд охраняет от опасностей в дальних плаваниях, турмалин вдохновлял художников, аметист оберегал духовных лиц от соблазна. Считается, что талисманом может быть только тот камень, который был подарен или передан по наследству.
Так же широко была распространена вера в лечебные свойства драгоценных камней. В Средние века ювелиру приходилось быть не только ремесленником и купцом, но также и врачом, способным в случае болезни подобрать камень для излечения.
Астрологи утверждали, что каждый драгоценный камень принадлежит определенному знаку зодиака и люди должны носить только камни своего знака. Ношение камня, не соответствующего знаку зодиака, под которым родился его обладатель, оказывает дурное влияние на судьбу. Овнам следует носить алмазы, Тельцам — сапфиры, Ракам и Козерогам для счастья необходимо обзавестись колечком с изумрудом, а вот Рыбам астрологи рекомендуют отказаться от ношения камней — может на дно утянуть.

Наряду с природными камнями и стеклянными стразами для украшения часов часто используют искусственно выращенные кристаллы. Что это: дешевая подделка или камни, обладающие самостоятельной ценностью?

Бытующее в народе представление о синтетических драгоценных камнях на сегодняшний день мало соответствует действительности. При употреблении этого словосочетания большинство людей представляют себе маленькие безделушки из стекла, цена на которые невелика, а ценность - еще меньше. Конечно, в большинстве случаев искусственные камни действительно дешевле природных. Однако разница в цене зачастую не так велика, в то время как по оптическим и декоративным характеристикам синтезированные человеком камни почти неотличимы от натуральных, а иногда даже превосходят их.

Люди научились искусственно получать очень многие минералы, в том числе когда-то относившиеся к драгоценным камням. Например, дорогой природный рубин в подшипниках часовых механизмов и других точных приборов уже давно заменен на рубин искусственный. Дело не только в цене: промышленное производство нуждается в больших объемах камней с четко определенными параметрами, чего природа дать просто не в состоянии. Именно по этой причине для изготовления резонаторов, являющихся сердцем всех без исключения кварцевых калибров, используются исключительно искусственные камни. Но подшипники и резонаторы скрыты от взгляда покупателя, да и продавец обычно не имеет возможности заглянуть настолько глубоко внутрь часов. Гораздо чаще мы обращаем внимание на их внешний облик, и задаемся вопросами о том, чем именно декорирована та или иная модель. Тем более, что наряду с природными камнями и стеклянными стразами, о которых мы говорили в прошлом номере, все бльшее распространение получают искусственные камни.

Самоорганизующаяся материя

Кристаллы - вещества, в которых мельчайшие частицы (атомы, ионы или молекулы) «упакованы» в жестком, строго определенном порядке. В результате при росте кристаллов на их поверхности самопроизвольно возникают плоские грани, а сами кристаллы принимают интересные геометрические формы. Если вы бывали в музее минералогии, наверняка восхищались изяществом и красотой форм, которые принимают «неживые» вещества.

В природе кристаллы могут быть самыми разнообразными как по форме и размеру, так и по цвету. В естественной среде они растут очень медленно, и их внешний облик определяется тем, насколько равномерно и спокойно происходил рост. Разумеется, в мире кристаллов есть и те, что формируются быстро - например, кристаллы соли или льда, но ценности для ювелирного и часового дела они не представляют. Кристаллы начинают образовываться тогда, когда вещество переходит из газообразного или жидкого состояния в твердое. Например, иней, появляющийся на проводах - это кристаллы льда, сформировавшиеся на поверхности металла при охлаждении воздуха.

Схожие процессы происходят и при образовании более долговечных кристаллов: главное условие - равномерное поступление «сырья» для строительства кристаллической решетки. Зарождаясь на глубине в десятки километров, огненно-жидкие расплавы сложного состава проплавляют себе путь в земной коре и, прорываясь ближе к поверхности, постепенно отвердевают, не в силах нагреть все вокруг себя. Именно постепенное охлаждение магмы и ее постоянное добавление создает удивительную возможность для роста самых разнообразных кристаллов.

Химия процесса очень сложна и нельзя сказать, что изучена до конца. Наглядно представить его суть помогает паркетный пол, состоящий из множества плиток. Легче всего работать с плитками квадратной формы - как ее ни поверни, она все равно подойдет к своему месту, и работа пойдет быстро. Именно поэтому легко кристаллизуются соединения, состоящие из атомов (металлы, благородные газы) или небольших симметричных молекул. Гораздо сложнее выложить паркет из прямоугольных дощечек, особенно если у них с боков имеются пазы и выступы - тогда каждую из них можно уложить на место одним единственным способом. Особенно трудно собрать паркетный узор из досок сложной формы.

Примерно те же процессы происходят и при росте кристаллов, только здесь частички должны собраться не в плоскости, а в объеме. Но ведь никакого «паркетчика» здесь нет - кто же укладывает частички вещества на свое место? Оказывается, они находят его сами, потому что непрерывно совершают тепловые движения и «ищут» подходящее для себя место, где им будет наиболее «удобно». В данном случае «удобство» подразумевает энергетически наиболее выгодное положение. Попав на такое место на поверхности растущего кристалла, частица вещества может там остаться, и тогда через некоторое время она окажется уже внутри кристалла, под новыми наросшими слоями вещества. Но возможно и другое: частица вновь уйдет с поверхности в раствор и снова начнет «искать», где ей удобнее устроиться.

Таблица 1. Ориентировочная стоимость фианитов различной огранки при крупных оптовых закупках

Каждое кристаллическое вещество имеет определенную свойственную ему внешнюю форму кристалла. Например, для хлорида натрия эта форма - куб, для алюмокалиевых квасцов - октаэдр. И даже если сначала такой кристалл имел неправильную форму, рано или поздно он все равно превратится в куб или октаэдр. Более того, если кристалл с правильной формой специально испортить, например, отбить у него вершины, повредить ребра и грани, то при дальнейшем росте он начнет самостоятельно «залечивать» свои повреждения. На этом свойстве основан интересный опыт: если из кристалла поваренной соли выточить шар, а потом поместить его в насыщенный раствор NaCl; через некоторое время шар сам превратится в куб.

Особое место среди кристаллов занимают драгоценные камни, которые с древнейших времен привлекают внимание человека: алмазы, рубины, опалы, топазы, аметисты, изумруды и многие другие. Натуральные кристаллы высокого качества встречаются крайне редко, а потому весьма дороги и чаще всего используются в высококлассных ювелирных изделиях или специальных технических приборах. Например, лазерная техника немыслима без натуральных рубинов, а добыча руды без алмазной крошки, нанесенной на резцы гигантских буров. Во многих более простых случаях оказывается выгоднее использовать не природные, а искусственные кристаллы. Из синтетических камней сделана наждачная бумага и все полупроводниковые элементы, которые являются основой окружающей нас электронной техники. Отдельные кристаллы получили применение в ювелирной и часовой промышленности как более доступная, но эффектная замена натуральных камней.

Каменное богатство

Искусственным путем получают как аналоги натуральных кристаллов, так и те, которых в природе вообще не существует. Большинство синтетических камней повторяют химический и структурный состав своих природных аналогов. Так, одним из популярных синтетических минералов, применяемых ювелирами и часовщиками, является корунд, впервые полученный французским ученым Е. Фреми в 1877 году. В 1902 году его ученик Огюст Вернейль опубликовал результаты исследования собственного способа синтеза монокристаллов из окиси алюминия. Метод Вернейля состоит в следующем: порошок окиси алюминия засыпают в печь при температуре 2150°С, при плавлении алюминий превращается в капли, оседающие и нарастающие на подкладке из огнеупорного материала. Сейчас метод Вернейля активно применяется для изготовления искусственных александрита, аметиста, рубина, сапфира, топаза, аквамарина и других минералов.

Смешивание окисей алюминия и магния с дальнейшим применением процесса Вернейля дает жизнь синтетической шпинели, которая также используется в ювелирном и часовом деле. Для производства шпинели также применяется метод Чохральского, суть которого лучше всего описывает история его открытия. В 1916 году польский химик Ян Чохральский случайно уронил свою ручку в тигель с расплавленным оловом, и когда доставал ее, обнаружил тянущуюся металлическую нить с монокристаллической структурой. Аналогичным образом сейчас в тигель погружают затравку из материала будущего кристалла и начинают очень медленно ее поднимать, в это время на ней наращивается необходимый новый слой.

Рожденные в ФИАНе

Важнейший шаг в индустрии искусственных материалов, имитирующих драгоценные камни, был сделан в нашей стране: в 1972 году учеными Физического института Академии наук СССР был впервые синтезирован кубический кристалл диоксида циркония. Синтетический материал, созданный на основе окислов циркония и гафния, получил имя фианит в честь сокращенного названия института ФИАН. Кристаллы массой 200-400 г образуются в результате постепенного охлаждения расплава, нагретого до 2800°С (метод прямого высокочастотного плавления).

Благодаря сочетанию низкой стоимости и отличных оптических характеристик фианиты произвели мини-революцию: их коэффициент преломления равен 2,15-2,25, а твердость - 7,5-8,5 по Моосу, что предельно близко показателям алмаза. Промышленное производство фианита началось в 1976 году, а уже к 1980-му мировой объем выпуска достиг 50 млн карат в год. Для сравнения, это примерно половина сегодняшней общемировой добычи необработанных природных алмазов.

Советское название «фианит» на мировом рынке превратилось в химическое CZ (кубический диоксид циркония - cubic zirconia). Из-за этого в переводах с других языков фианит часто путают с цирконом или цирконием, что неправильно. Цирконий - это металл, он непрозрачен, и, соответственно, не может быть использован в ювелирных вставках. Циркон - это природный минерал, бесцветный или коричневато-жёлтый, достаточно нежный: его твердость соответствует шести по шкале Мооса, т.е. он легко царапается кварцем. Раньше циркон использовался как имитация бриллианта, но после изобретения фианита уступил ему место, поскольку фианит обладает почти идеальными физическими свойствами, соответствующими самым высоким требованиям ювелирной промышленности.

Помимо прочего, фианит отличается еще и высокой скоростью роста. Так, при искусственном выращивании алмаз прибавляет 1,6-3,2 мм/сут., апатит 6,5 мм/сут., а фианит 8-10 мм/сут. Быстрее него способны расти корунд (0,3- 365 мм/сут.) и кварц (0,06-400 мм/сут.), но они в ювелирной промышленности не используются.

Важнейшей характеристикой лабораторных кристаллов является их цена: синтетические камни примерно в 5-10 раз дешевле природных аналогов. Хотя, конечно, стоимость зависит от каждого конкретного кристалла, его огранки и мастерства ювелира. Так, синтетический рубин стоит в 10 раз меньше, нежели природный минерал, разрыв в ценах искусственного и натурального изумруда не так заметен - всего 2-3 раза. А король камней - алмаз - можно считать исключением в этом ряду: его уникальная структура очень сложна для лабораторного производства, поэтому стоимость синтетических алмазов часто совпадает с ценами на экземпляры натурального камня.

Кстати, стоимость фианита при оптовых закупках может сильно удивить неискушенного читателя. По данным одного крупного поставщика различных декоративных камней.

Исследования искусственных кристаллов постоянно продолжаются. В 1995 году в США появился еще один материал, соперничающий с натуральными бриллиантами - карбид кремния, получивший название муассанит. Новый синтетический кристалл, разработанный учеными из университета Северной Каролины, был выведен на рынок компанией Charles & Colvard, и теперь вовсю старается отвоевать позиции у более привычных искусственных камней и их аналогов природного происхождения. Так что химики остаются серыми кардиналами ювелирной промышленности, создавая новые соединения, способные значительно повлиять на ценообразование, моду и общую ситуацию на рынке.

Фитнес